A New Learning Algorithm for Optimal Stopping

نویسندگان

  • Vivek S. Borkar
  • Jervis Pinto
  • Tarun Prabhu
چکیده

A linear programming formulation of the optimal stopping problem for Markov decision processes is approximated using linear function approximation. Using this formulation, a reinforcement learning scheme based on a primal-dual method and incorporating a sampling device called ‘split sampling’ is proposed and analyzed. An illustrative example from option pricing is also included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Placement of Capacitor Banks Using a New Modified Version of Teaching-Learning- Based Optimization Algorithm

Meta-heuristics optimization methods are important techniques for optimal design of the engineering systems. Numerous methods, inspired by different nature phenomena, have been introduced in the literature. A new modified version of Teaching-Learning-Based Optimization (TLBO) Algorithm is introduced in this paper. TLBO, as a parameter free algorithm, is based on the learning procedure of studen...

متن کامل

Comparing different stopping criteria for fuzzy decision tree induction through IDFID3

Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...

متن کامل

Monte Carlo Algorithms for Optimal Stopping and Statistical Learning

We extend the Longstaff-Schwartz algorithm for approximately solving optimal stopping problems on high-dimensional state spaces. We reformulate the optimal stopping problem for Markov processes in discrete time as a generalized statistical learning problem. Within this setup we apply deviation inequalities for suprema of empirical processes to derive consistency criteria, and to estimate the co...

متن کامل

An Introduction to a New Criterion Proposed for Stopping GA Optimization Process of a Laminated Composite Plate

Several traditional stopping criteria in Genetic Algorithms (GAs) are applied to the optimization process of a typical laminated composite plate. The results show that neither of the criteria of the type of statistical parameters, nor those of the kinds of theoretical models performs satisfactorily in determining the interruption point for the GA process. Here, considering the configuration of ...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Event Dynamic Systems

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009